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A noniterative method is discussed for solving the electron-atom scattering equation 
derived in second-order many-body theory. The incident electron energy is taken to lie 
above the first inelastic threshold of the target atom. The method is applied to electron- 
helium collisions and elastic phase shifts for s-, p-, and. d-wave scattering, computed in 
various models arising from the formalism, are tabulated. 

1. INrr~00~Orr0N 

In the theoretical study of electron-atom collisions, one is frequently confronted 
with the problem of solving an equation of the type 

[V2 + k2] &(r) = J Z(r, r’; k2) &(r’) dr’ 

for the scattering functionf,(r). The expression on the left-hand side is the familiar 
free-particle operator describing the external electron in the absence of the target 
atom. The presence of the atom is recognized by the potential term Z(r, r’; k2), 
appearing under the integral on the right-hand side, which will be referred to as the 
optical potential. This potential is in general dependent upon the incoming electron 
energy (k2) and nonlocal. If k2 is less than the energy of the first inelastic threshold, 
so that only the elastic channel is open, the potential is real, otherwise inelastic 
channels also become open and flux removed from the entrance channel, giving rise to 
absorptive effects, which will introduce an imaginary component to L’(r, r’; k2). 
Because of the extremely complicated and complex nature of such a potential, one is 
forced to adopt some kind of approximation. It is the purpose of this paper to show 
how Eq. (1) may be solved in the case of elastic electron-atom scattering when the 
optical potential is approximated to second order according to the many-body 
theory scheme introduced by Schneider et al. [l]. To be specific, the target will be 
taken as a two-electron atomic system with nuclear charge 2. 

The formulation of this many-body scheme for application to such a target has 
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already been carried out by Scott and Taylor [2] so that here only their final result 
for Z(r, r’; I?) need be given, viz., 

,E(r, r’; k2) = ZHF(r, r’) + Zp(r, r’; k2) - ZEP(r, r’; k2). (2) 

The first term on the right-hand side of Eq. (2) is the familiar first-order Hartree- 
Fock potential which will represent the static-exchange model introduced by Morse 
and Allis [3]. This is followed by the second-order polarization term .Zp together with 
exchange counterpart C EP. Denoting the atomic wavefunctions by #Jr, r’), with 
II = 0 corresponding to the ground state of the target, let us put 

where 

Vmn(r> = I 6%x, Y) u(r - ~4 A(x, Y> dx dy, (3) 

u(r - r’) = 2// r - r’ /, (4) 

so that the components of the model optical potential in Eq. (2) can be expressed as 

ZHF(r, r’) = [-22/r + 2V,(r)] 6(r - r’) 

Zp(r, r’; k2) = 2 c V&r) G(r, r’; k,2) V&r’), 
n#o 

W 

zEP(r, r’; k2) = nTo Vdr) 1 G( r, x; kn2) #Xx, Y) W - x> #&‘, Y) dx ti. (5~) 

Here, the summations over n include a discrete contribution from the bound states 
and an integral over the continuum states. Potential terms of similar structure arise 
also in the second-order optical potential approach of Bransden and Coleman [4]. 
The second-order terms defined by Eqs. (5b) and (5~) require knowledge of a suitable 
Green’s function (propagator); below, the computation of such a function for scatter- 
ing in the field of a local potential will be discussed. Energy dependence of the Green’s 
function, which is the energy of the total system in channel n, is denoted by k,a. 

Having defined the approximation of Z(r, r’; k2) to be adopted, one proceeds to 
separate its radial and angular dependence, using the methods of partial wave analysis. 
Then, by introducing a partial wave decomposition of the function f&r), Eq. (1) is 
reduced from a three-dimensional equation to a one-dimensional (radial) equation, 
thus making the problem more amenable to numerical solution. This analysis will 
form the material for Section 2. In Section 3 techniques to compute the radial Green’s 
function will be discussed and then the radial optical potential reduced to a simpler 
mathematical expression. Section 4 will be concerned with the transformation of the 
simplified radial equation to an integral equation in preparation for application of a 
suitable numerical procedure to solve this particular type of equation. Finally, in 
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Section 5 the methods developed are specialized to the calculation of elastic scattering 
s-, p- and d-wave phase shifts for electron-helium collisions. 

2. PARTIAL WAVE ANALYSIS 

The summations over target states in Eqs. (5b) and (5~) present a special problem; 
for present purposes, it will be assumed adequate to retain a finite (discrete) number 
of terms, the specific nature of such terms to be otherwise determined by physical 
considerations as appropriate to a particular scattering system. The states so retained 
will be expressed as products of one-particle orbitals. Further, from the work of, for 
example, Yarlagadda [5], it can easily be shown that these states must possess a singlet 
spin configuration. Hence, let us write 

#o@, r’) = h(r) Mr’), (6) 

hdr, r’) = 2-1/z[40W 44’) + b(r) AWI, (7) 
where the one-particle orbitals will be written in terms of their radial (r) and angular 
(+) components as 

h(r) = &&9 Yootf), (8) 

4otr) = 49 Y&h (9 

Ah) = Rdr) Yzmtr?. (10) 

The familiar multipole expansion of the electron-electron interaction term (Eq. (4)) 
is given by 

u(r - r’) = 2 f i z=. m=-z & yz(r, r’) Y&) Gd+‘)~ 

where, employing the Heaviside function e(x), 

yz(r, r’) = e(r’ - r) rz/r’lcl + O(r - r’) r’l/rl+l. (12) 

Expanding also the Green’s function into its radial and angular parts, one has from 
Newton [6] that 

G(r, r’; kn2) = 2 f i G,(r, r’; k,2) r-lr’-lYlm(f) Y&(9’). 
z=o m=-C 

(13) 

Hence, returning to Eq. (2) and substituting Eqs. (3)-(13), the following partial wave 
representation for the optical potential is derived: 

Z(r, r’; k2) = f i &(r, r’; k2) r-lr’-lYt,(F) Y&(P), 
z=o m---I 

(14) 
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where the radial component is given by 

&(r, r’; k2) 

&r-r’) 1 
zzz [--2-V + 4 jm yo(r, 4 I xMxN~ dx 

0 

- 2ydr, r’) r&,(r) r’Mr’)W + 1) 

+ 4B2 1 C ~hs.dr> [2(2X + 1)(21’ + 
n 2’ A 

l>-l.Ldr> W, r’; kn2) 

- (zA + l)(zl + I)-‘r’R,,(r’) ia y&x, r’) R,~$x) G,(r, x; k,2) x dx](i K $‘. 

(15) 
In the above expression, the notation 

B= m s w(x) J-W9 x2 dx, (16) 
0 

and 

.Ldr) = Lrn n(r, 4 &,W &Z(X) x2 dx (17) 

has been introduced. The sum over n has already been discussed, while the sum over 1’ 
includes all principal angular-momentum states associated with a particular n (Z’ < n). 
Because of the presence of the Wigner 3-j symbols, the sum over A is such that h = 
1 I - 1’ I) 1 I - I’ + 2 I)...) 1 I + I’ - 2 I) / I + I’ I. 

Taking the z-axis parallel to the direction of the incoming electron, the scattering 
function is expanded into the partial wave series 

Sk(r) = k--II2 g w3(k r> Y,o(3, 
I=0 

(18) 

where the Ith partial wave satisfies regular boundary conditions at the origin and at 
large radial distances has the usual asymptotic behavior 

piz,f,(k, r) = k-1/2 sin(4(r) + 8,) (19) 

with r#(r) and at defined, for example, by Mott and Massey [7]. 
Substituting Eqs. (14) and (18) into Eq. (I), one derives the integro-differential 

equation 

1 d2 
- 
dr2 

- w + k2] f,(k, r) = Lrn &(r, r’; k2)fi(k, r’) dr’. (20) 

This is the radial with which the remainder of this paper will be concerned. 
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3. REDUCTION OF Cl(r,r';k2) 

This section will begin with the computation of the partial wave Green’s function 
G&, r’; q2) introduced in Eq. (13). For scattering by a local spherically symmetric 
potential U(r), the Green’s function can be expressed as (Newton [6]) 

Gl(r, r’; q2) = al(r) &(r’)O(r - r) + aa &(r)O(r - r’), (21) 

where al(r) and b,(r) are solutions of the differential equation 

[ 
d2 w + 1) --___ 
dr2 r2 + 9’ - W] $dq, r> = 0 

constructed so that Gt(r, r’; q2) satisfies outgoing wave boundary conditions. The 
regular solution al(r), which satisfies the same boundary conditions as given in 
Eq. (1% forfdk > r , is readily obtained from Eq. (22) by a standard Numerov integra- 
tion scheme provided initial power series solutions can be derived at small r. In order 
to compute b,(r), which depends upon the irregular solution, it is more convenient 
to use the integral version of Eq. (22), thus building in the appropriate boundary 
conditions: 

+&I, r) = &r) + 9-l lrrn WWdv) %(9x) - h(9x) fidqr)l h(9, 4 dx, (23) 

where 
KXqr) = -q-1/2[6i,(9r) - ijl(qr)]. (24) 

For a neutral target, U(r) will decay exponentially at large r and f&) and 4&c) will 
denote the regular and irregular Riccati-Bessel functions, respectively, normalized 
such that as x -+ co, h(x) + sin@ - 17r/2) and fit(x) -+ -cos(x - lrr/2). 

Equation (23) is integrated inwards from the asymptotic region where it is assumed 
U(r) is negligible. However, for an ionic target, which generates a long-range Coulomb 
potential of strength -(Z - 2)/r, this assumption will not be true. The problem is 
circumvented by using appropriate spherical Coulomb functions for h(x) and &(x) 
and hence retaining only the exponentially decreasing part of the potential under the 
integral. Simpson’s rule is used to perform the integration. 

A mesh of points is set up from the origin which consists of several grids such that 
the step length of each grid is twice that of the previous grid. For notational purposes, 
let n denote evaluation at the point r, and n = N correspond to the end point farthest 
from the origin. It is convenient in Eq. (23) to drop the subscript 1 and to absorb the 
factor 9-l into U(x). Then application of Simpson’s rule yields 

$44 = 44 + mm + 2) + ;w4n + 2)fi(n + Q& + 2) 

+ 4U(n + W(n + l>#(n + l)]} - f@){J(n + 2) 

+ iW(n + 2)Xn + 2)$(n + 2) + 4w + l)Xn + l>$(n + 1)1), (23 
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where h denotes step length and 

I(n) = 1” U(x) ii(x) #(x) dx, 44 = s” U(x) j(x) +(x) dx. (26) n 11 

These integrals may be evaluated by further use of Simpson’s rule. 
The formula given in Eq. (25) requires a constant step length so that in the present 

work a modification is needed to overcome the change in step length at the end of 
each grid. Letting h denote the new step length, use is made of the formal result 

= W(r) g(r) + 2ftr + h/N&) + gtr + hN + ftr + 4 & + hW6 (27) 

where it is assumed that the functionf(x) may be evaluated at any value of x but that 
g(x) is only known at the end points; hence, the mean value of g with respect to these 
end points has been used at the midpoint r + h/2. Associating # with g and since 
U(x), j(x), and ff(x) may be evaluated at any x, Eq. (27) is applied to Eq. (23) to 
compute IJ at the first point of the new grid. A similar method is used to evaluate also 
the integrals defined in Eq. (26) at this point. Thereafter, the formula of Eq. (25) is 
used to compute zj at the second and subsequent points of the grid. 

Having discussed the computation of G$(r, r’; q2), let us now turn our attention 
to the integral term appearing in Eq. (15) which depends upon a knowledge of 
G,(r, r’; q2) and denote this exchange integral by #,,(r, r’; q2): 

l&(r, r’; q2) = lorn yr(x, r’) R,,,*(x) G,(r, x; q2) x dx. (28) 

Substituting for n(x, r’) and GA(r, x; q2) according to Eqs. (12) and (21), respectively, 
it is convenient to define the resulting integrals by 

&l(r) = Jo’ R,,<(x) aA xzfl dx, (294 

fn2tr) = l’ R,,#(x) bA(x) xz+l dx, t29b) 

fl\“(r) = [’ R,,r(x) an(x) x-~ dx, 
JO 

(29~) 

h”(r) = l* R,,,(x) b,(x) X-I dx, (294 

so that putting 
gA1(r) = r--(t+1)f,2(r) + rEfnYr), 

gA”(r> = bk9.M) - W)h2tr), 

h>‘(r) = r- (z+l)&l(r) - rx3(r), 

hA2@) = W)f,3(r) + d9.A4(r)t 

W) 

Wb) 

(3W 

(304 
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Eq. (28) becomes 

H,l,,(r, r’; 42) = [!A(‘) g,l(r’) + gA”(r) r’-‘z+“]e(r’ - r) 

+ [b,(r) hA1(r’) + hh2(r) rrz]O(r - r’). (31) 

While the integrands of Eqs. (29a)-(29c) are regular at the origin and may hence 
be evaluated by outward integration (using, for example, Simpson’s rule), that of 
Eq. (29d) is irregular. However, since the integrand offA* also contains the exponen- 
tially decaying bound state function R,,(r), the integral is most conveniently obtained 
by inward integration from the asymptotic region (where the integrand is effectively 
zero) using Simpson’s rule. The formula given in Eq. (27) is employed at the beginning 
of each new grid. 

Finally, by adopting the notation 

Cf - WI + 1) 
IZ h - 21’ + 1 

* 
ZZ’A 7 D zz’A = 4B2 “;: ; ;) (:, ‘d ;r, 

the expression for the partial wave optical potential of Eq. (15) reduces to the form 

Lqr, r’; k2) = [-2Z/r + 4 jm yo(r, x) / XR,,(X)12 dx] 6(r - r’) 
0 

- 2yz(r, 0 r&dr) r’&dW2~ + 1) + 1 C ~.fL,dtr) 
12 1’ h 

x [Czz~nfis.nz@> GA@, r’; kn2) - &zv’&(r’) fJ:z4r, r’; k,V. (32) 

For a suitable choice of atomic wavefunctions, the integrals defined in Eqs. (16) and 
(17) and that appearing in Eq. (32) may be evaluated analytically so that all the terms 
arising in Eq. (32) are now known at the mesh points. 

4. METHOD OF SOLUTION 

By introducing the Green’s function operator &(r, r’; k2) associated with the 
left-hand side of Eq. (20) one transforms this equation to read 

f,(k r) = R(r) f 6 Jom K,(r, x; k2) zz(x, r’; P)fi(k, r’) dx dr’, (33) 

where 

K,(r, r’; k2) = R(r)Z(r’)B(r’ - r) + Z(r)R(r’)B(r - r’). (34) 

The regular and irregular functions are given respectively by 

W9 = fdW and Z(r) = k-%,(kr) 
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with j&c) and fi&x) defined following Eq. (24). With this choice of Green’s function 
operator, and introducing the phase shift 6, , f,(k, r) has the asymptotic behavior 

(35) 

which is equivalent to the boundary condition specified in Eq. (19). 
It is convenient at this point to let V(r) denote the first-order direct term (the nuclear 

plus static potential), viz, 

W> = --22/r + 4 jam y,(r, x) j xR1,(x)j2 dx 

--m- -2(Z - 2)/r. (36) 

In subsequent numerical work it is essential that V(r) decrease rapidly at large r so that 
V(r,J and V(r,) may be taken as effectively zero. For neutral helium this condition 
is satisfied, otherwise for ionic targets (Z > 2) one must adopt the procedure outlined 
in connection with computing the Green’s function discussed in Section 3 for such a 
target. That is, the term -2(Z - 2)/r is transferred to the left-hand side of Eq. (20) 
leaving the remainder of the first-order direct term with the required decay behavior 
and using spherical Coulomb functions in the construction of K,,(r, r’; I?). 

Defining a new integral function 

K(r, r’; k2) = jam &(r, x; k2) &(x, r’; k2) dx, (37) 

which is independent of f,(k, r), Eq. (33) is reduced to a one-dimensional integral 
equation: 

f,(k r) = R(r) + /#a K(r, r’; k2)fi(k, r’) dr’. (38) 

The functions comprising the integrand of Eq. (37) are known so that one may proceed 
to simplify and evaluate this term. 

Equation (38) is then integrated using a method described by Thomas [8]. Details of 
the numerical formulas are supplied by Thomas in his paper and no further develop 
ment of the method to this problem need be given here. 

To summarize, the solution of Eq. (20) proceeds in three steps: 

(1) Compute the functions q(r) and b*(r) comprising the Green’s function 
Gh(r, r’; kn2) at each mesh point; 

(2) compute the functions and integrals comprising K(r, r’; k2) of Eq. (37) at 
each mesh point; 

(3) use the data of step (2) as input to a program to solve Eq. (38) based on 
the noniterative method of [8]. 
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5. APPLICATION TO ELASTIC ELECTRON-HELIUM SCATTERING 

Let us now use the methods described to compute elastic s-, p-, and d-wave phase 
shifts for electron-helium scattering. The summation over n, which in principle 
includes a discrete sum over the bound states and an integral over the continuum 
states of the target atom, is handled by the method of pseudostates such that by 
retaining just one state in the summation, the real part of the second-order potential 
will in the asymptotic region behave as - 0111’4 where cy. is the static dipole polarizability 
of helium. To achieve this behavior, the pseudostate must be of P-symmetry; higher 
multipoles of the polarization potential may be derived by the further addition of 
states with D, F ,..., symmetry. 

Thus adopting the Hartree-Fock function of Green et al. [9] to describe the ground 
state function A&), Eq. (8) is written as 

&(r) = N(e+ + ce-bT) Y,(f), (39) 

where a = 1.4558, b = 2.9116, c = 0.6, and N is a normalization constant. Based 
on the method of polarized orbitals [lo], Eqs. (9) and (10) are taken to be of the form, 
denoting the pseudostate method by subscript p, 

&r) = 2z$?-=~TYoo(+), 

&(r) = 42, (+$-)“” emZoT [Zg + i (Z,l,2] Y,,(i). 

(40) 

(41) 

In the adiabatic limit, assuming for 01 the value quoted by Teachout and Pack [I I], 
namely, 01 = 1.383 uo3, Z,, = 1.2240. Further details on this choice may be found in 
the papers by Scott and Taylor [2]. Use of a P-state implies that one takes I’ = 1 
in the formula for the optical potential given in Eq. (32). Consequently, from the 
properties of the Wigner 3-j symbols, the summation over h reduces to one term for 
s-wave scattering (A = 1) and to two terms otherwise (A = I f 1). 

Turning to the Green’s function G,+(r, r’; kD2), the potential term appearing in 
Eq. (22) is expressed as 

with V(r) defined in Eq. (36). Exchange effects are taken into account via W(r). In 
the static-exchange approximation, W(r) is an operator in the sense that 

The regular component aA of the Green’s function is in fact most easily obtained 
from this approximation (rather than in a model utilizing only local potentials) 
using an adaptation of the Numerov procedure incorporated into the program of 
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McDowell et al. [12]. For the component b,(r), it is, however, more convenient to 
employ a local equivalent exchange potential for W(r). In the present work, use is 
made of the (corrected) local potential originally due to Furness and McCarthy [13], 
VlZ., 

W(r) = 3(k2 - V(r)] - ([kp2 - V(r)12 + 8 I Rls(r)12)1/2>. tw 
This approximation to the static-exchange potential has been examined by Bransden 
et al. [14] and found to provide elastic phase shifts in close agreement with an exact 
treatment. Thus the resulting Green’s function is expected to be a good approximation 
to the exact Hartree-Fock Green’s function which would otherwise be considerably 
more complicated to compute [2]. Scattering functions have been computed using this 
approximation to the Hartree-Fock Green’s function and also using the free-particle 
Green’s function given by 

aA = k;“yA(k,r) and h(r) = --h(b), 

with X(X) and h,(x) defined in connection with Eq. (23). 

(45) 

Apart from the free-particle Green’s function, the Riccati-Bessel functions are 
required in the computation of the integrals arising from Eq. (37). Standard routines 
are readily available to evaluate these functions. The current program employs the 
method developed and programmed by Barnett et al. [15] and subsequently modified 
by Barnett [16]. 

In order to facilitate use of the Numerov method employed by [12] to compute 
the regular component aA of the Green’s function, the set of mesh points used 
in this calculation is composed of 2000 points, divided into seven grids of 40,40,40,40, 
40,800, and 1000 points. The initial step length is taken to be h = 0.0005~~ and doubled 
at the end of each grid to yield a range of integration running from r = 0 to r = 
45.42~~ . It is important that the initial step length be small so as to provide accurate 
starting values for the solutions using the method outlined by Thomas [8]. Stability 
of the program was tested by varying the initial step length and altering the number of 
points in each grid; accuracy to the fourth decimal place in each phase shift considered 
was maintained. 

Incorporation of a switch into the program allowed results to be computed in the 
simpler first-order static-exchange approximation, though omitting the overlap term 
between R,,(r) andf,(k, ) r arising in s-wave? scattering. Additional switches enabled 
results from use of the full second-order potential to be computed employing either 
the Hartree-Fock approximation (Gnr) or the free-particle approximation (Go) 
to the Green’s function. Also, the second-order exchange term defined in Eq. (5~) 
could be omitted. 

Because the Green’s function defined in Eq. (21) incorporates outgoing wave bound- 
ary conditions, the optical potential will indeed possess both real and imaginary 
terms giving rise to complex phase shifts 8, (=X, + ip6 , say). The imaginary compo- 
nent p1 describes the effect of the inelastic channels upon the elastic scattering channel. 
If, however, one ignores pz (or takes no account of absorption as for example in the 
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static-exchange approximation), the scattering becomes purely elastic described by 
the real component Al . 

The real (elastic) components of the s?, p-, and d-wave phase shifts, computed at 
various incident energies in the above models, are presented in Tables I-III. Compari- 
son of the phase shifts obtained by adopting the free-particle approximation to the 
Green’s function reveals that the second-order many-body treatment is not particularly 

TABLE I 

Elastic s-Wave Phase Shifts (in Radians) 
for Electron-Helium Scattering 

Energy (eV) (4 (4 6-V 

50 1.3113 1.3450 1.3466 1.3474 1.3499 

100 1.0577 1.0696 1.0689 1.0698 1.0691 

150 0.9334 0.9377 0.9377 0.9376 0.9375 

200 0.8548 0.8561 0.8566 0.8561 0.8565 

300 0.7559 0.7548 0.7558 0.7548 0.7557 

(i Static-exchange approximation. 
b Many-body approximation with G,, but omitting second-order exchange. 
0 Many-body approximation with G ur but omitting second-order exchange. 
d Many-body approximation with Go . 
‘ Many-body approximation with Gur . 

TABLE II 

Elastic p-Wave Phase Shifts (in Radians) 
for Electron-Helium scattering 

Energy (eV) (4 (b) (4 (4 63 

50 0.3219 0.3485 0.3407 0.3460 0.3351 

100 0.3447 0.3510 0.3531 0.3497 0.3506 
150 0.3467 0.3486 0.3515 0.3478 0.3501 

200 0.3445 0.3448 0.3477 0.3443 0.3468 
300 0.3372 0.3363 0.3388 0.3360 0.3384 

5 Static-exchange approximation. 
b Many-body approximation with G, but omitting second-order exchange. 
c Many-body approximation with G ur but omitting second-order exchange. 
d Many-body approximation with Go. 
a Many-body approximation with Gup . 

58113313-6 
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TABLE III 

Elastic d-Wave Phase Shifts (in Radians) 
for Electron-Helium Scattering 

Energy (eV) (4 @I (4 (4 (4 

50 0.0682 0.0985 0.1004 0.0952 0.0969 

100 0.1106 0.1185 0.1192 0.1179 0.1184 

150 0.1340 0.1371 0.1383 0.1367 0.1378 

200 0.1486 0.1500 0.1514 0.1497 0.1510 

300 0.1656 0.1656 0.1669 0.1654 0.1667 

a Static-exchange approximation. 
L Many-body approximation with G0 but omitting second-order exchange. 
c Many-body approximation with G HP but omitting second-order exchange. 
d Many-body approximation with G,, . 
‘ Many-body approximation with GH~. 

sensitive to the choice of propagator. At higher energies, the phase shifts within each 
table agree generally to two significant figures with the static-exchange results of 
column (a), demonstrating that the inelastic channels have a negligible effect on 
elastic scattering at these energies. 
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